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The hypothesis that nonenzymatic glycosylation of proteins (glycation) contributes to damage associated with
dietary copper deficiency has depended largely on indirect evidence. Thus far, the observation of an elevated
percentage of glycated hemoglobin in copper-deficient rats has provided the only direct evidence of an increase
in glycation. We sought further direct evidence of increased glycation in copper deficiency. Male weanling rats
were fed a copper-adequate (CuA, 6.4 mg Cu/kg diet) or copper-deficient diet (CuD, 0.4 mg Cu/kg diet) for 5
weeks. Rats fed the CuD diet were copper deficient as judged by depressed organ copper concentrations and a
variety of indirect indices. Measurements of hemoglobin A1 and serum fructosamine (both early glycation
end-products) as well as serum pentosidine (an advanced glycation end-product) indicated that all three
compounds were elevated in CuD rats relative to CuA rats. This finding further supports the view that glycation
is enhanced and thus may contribute to defects associated with dietary copper deficiency.(J. Nutr. Biochem.
10:210–214, 1999)Published by Elsevier Science Inc.
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Introduction

Nonenzymatic glycosylation (glycation) is the deleterious
binding of sugars to protein that is commonly observed in
diabetes and aging.1,2 The definition of glycation comprises
a series of reactions that includes the binding of the acyclic
form of a sugar to specific amino acids on a protein to form
a Schiff base, rearrangement of the Schiff base to form an
Amadori product (so-called early products), and crosslink-
ing and subsequent degradation of proteins to form ad-
vanced glycation end-products.1,2

Previously, we proposed that glycation may contribute to
the deleterious effects of dietary copper deficiency.3,4 A

variety of indirect evidence pointed to this possibility. The
observation of reduced glucose tolerance in copper-defi-
cient rats5–8 provided evidence for the hyperglycemia re-
quired for glycation. Evidence that dietary enrichment with
fructose, a better glycator than glucose,9 enhanced the
defects of copper deficiency4,10,11 suggested exaggeration
of an existing effect. Further, amelioration of signs of
copper deficiency by food restriction,4,12,13which reduces
blood glucose and glycation,14 and by treatment with
aminoguanidine,3 an inhibitor of advanced glycation,15

reinforced the view that glycation contributes to defects of
copper deficiency.

Despite the compelling indirect evidence, thus far the
only direct evidence that glycation occurs in copper defi-
ciency has been the observation of an elevated percentage of
glycated hemoglobin (Hb A1) in copper-deficient rats.3,4,16

Hb A1 is an early glycation end-product.17 The objective of
the present study was to corroborate the enhancement of
early glycation by measurement of another early glycation
end-product and to determine whether the glycation hypoth-
esis could be supported further by measurement of an
advanced glycation end-product. For that purpose we mea-
sured concentrations of serum fructosamine, an early (Ama-
dori) product of protein glycation,18 and pentosidine, a
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fluorescent condensation product of ribose, lysine, and
arginine that represents protein crosslinking,19 in copper-
adequate and copper-deficient rats. In addition, we at-
tempted to determine whether the previously observed
inhibition of signs of copper deficiency by aminoguanidine3

could be correlated with a depressed production of ad-
vanced glycation end-products and, further, whether treat-
ment with the antioxidant n-acetylcysteine20 might demon-
strate a synergy between oxidative stress and glycation.

Methods and materials

Animals and diets

Experiments were conducted in accordance with theGuide for the
Care and Use of Laboratory Animals.21

Fifty-six male weanling Sprague-Dawley rats (Sasco, Lincoln,
NE USA) were divided into eight weight-matched groups. Four of
the groups were fed a copper-adequate (CuA) diet and the other
four a copper-deficient (CuD) diet. Rats in each of the four
subgroups within each dietary group were given daily intraperito-
neal injections of, respectively, (1) normal saline, (2) aminogua-
nidine (as the hemisulfate; 50 mg/kg; Sigma, St Louis, MO USA),
(3) n-acetylcysteine (12.5 mg/kg body weight; Sigma), or (4) both
aminoguanidine and n-acetylcysteine.

Diets were composed of 940.0 g/kg of basal diet (catalog
#TD84469, Teklad Test Diets, Madison, WI USA), 50.0 g/kg of
safflower oil (Hollywood Foods, Los Angeles, CA USA), and 10.0
g/kg of mineral mix. The mineral mix contained cornstarch (Best
Foods, Englewood Cliffs, NJ USA) and iron with or without
copper and was designed to provide 0.22 g of ferric citrate (16%
Fe; Baker, Phillipsburg, NJ USA) and either 0.02 g of or no
CuSO4 z 5H2 (Baker) per kilogram of diet. The final CuA diet
contained 200 g/kg of casein, 386 g/kg of sucrose, 304 g/kg of
cornstarch, 50 g/kg of safflower oil, minerals equivalent to adding
35 g/kg of AIN-76 mineral mix (catalog #170915, Teklad), and
vitamins equivalent to adding 10 g/kg of Teklad vitamin mix
(catalog #40060, Teklad).22 Diet analysis by atomic absorption
spectrophotometry indicated that the CuA diet contained 6.4 mg of
copper per kilogram of diet and the CuD diet contained 0.4 mg of
copper per kilogram of diet. Parallel analysis of National Institute
of Standards and Technology (NIST, Gaithersburg, MD USA)
reference samples (#1515, apple leaves) yielded a value (5.41 mg
Cu/kg) within the specified range (5.40–5.88 mg Cu/kg).

Copper status indicators

After consumption of their respective diets for 5 weeks, rats were
anesthetized with an intraperitoneal injection of sodium pentobar-
bital (65 mg/kg body weight; Sigma). Blood was withdrawn from
the inferior vena cava and divided into aliquots for erythrocyte
counting (EDTA-treated) and serum assays (samples allowed to
clot at room temperature). Hearts were collected for copper assays
and determination of copper, zinc-superoxide dismutase (Cu,
Zn-SOD) activity, and livers were collected for copper and iron
assays.

Hematocrits were determined by using a Cell-Dyn cell counter
(model 3500CS, Abbott, Santa Clara, CA USA).

For mineral assays, samples of heart and liver were lyophilized
and then digested with nitric acid and hydrogen peroxide.23

Mineral concentrations of digested samples were measured by
inductively coupled argon plasma emission spectroscopy (Fisons-
ARL, model 3560B, Thermo-Jarrell-Ash, Franklin, MA USA).

Heart Cu,Zn-SOD activity was measured spectrophotometri-
cally using a Bioxytech SOD-525 kit (OXIS, Portland, OR USA).
A unit of activity is that amount of enzyme required to double the

rate of autoxidation of a proprietary reagent, the product of which
is a chromophore with maximal absorbance at 525 nm.

Assays for early glycation products

Hb A1 was measured by using the glycated hemoglobin (Hb A1)
kit (procedure no. 441; Sigma Diagnostics, St. Louis, MO USA),
which utilizes a cation exchange resin to separate Hb A from Hb
A1 and spectrophotometric measurement (415 nm) of each frac-
tion. Hb A1 is expressed as a percentage of total Hb A.

Serum fructosamine was measured by using the fructosamine
kit (procedure no. 465; Sigma Diagnostics), a colorimetric test
based on the ability of glycated serum proteins to reduce nitroblue
tetrazolium.24

Pentosidine assay

Pentosidine was measured by high pressure liquid chromatography
(HPLC) that utilized column switching to enhance separation.
Sample preparation followed the technique of Odetti et al.25 Fifty
milligrams of protein from a serum sample were precipitated on
ice with an equal volume of 10% trichloroacetic acid (TCA;
Eastman Kodak, Rochester, NY USA). Protein pellets were
washed twice with 5% TCA and acid hydrolyzed. Hydrolysis was
accomplished in borosilicate tubes by adding 2 mL of degassed 6N
HCl to the tubes, purging with nitrogen, capping the tubes, and
heating for 16 hours at 110°C in an aluminum heating block.
Residual acid was evaporated (AS160 Speed Vac, Savant, Farm-
ingdale, NY USA) and samples were reconstituted in purified
water (Millipore, Milford, MA USA) containing 0.01 mol/L of
n-heptafluorobutyric acid (HFBA; Sigma). The sample was fil-
tered through a 0.45-mm spin filter and a volume containing 1.4 to
1.7 mg protein was injected onto column 1 of the HPLC system.

The use of column switching in the HPLC isolation and
detection of pentosidine followed the protocol of Takahashi et al.26

The HPLC system consisted of a system controller (model SCL-
6B, Shimadzu, Columbia, MD USA), two pumps (model LC-
10AD, Shimadzu), an autosampler (model SIL-7A, Shimadzu), an
ultraviolet detector (detector 1, model 166, Beckman, Fullerton,
CA USA), a fluorescence detector (detector 2, model RF-551,
Shimadzu), and a six-port valve with a two position activator
(model EHMA, Valco, Houston, TX USA). Column 1 was a
gel-filtration column [TSK precolumn PW (4.6 mm3 3.5 cm);
TosoHaas, Montgomeryville, PA USA] and column 2 was an
octadecylsilyl column [TSK-GEL ODS-80T (4.6 mm3 15 cm),
TosoHaas]. The mobile phase for column 1 was 50 mL/L aceto-
nitrile (Baker), containing 30 mmol/L HFBA; the mobile phase for
column 2 was 200 mL/L acetonitrile containing 30 mmol/L HFBA.
The flow rate of through each column was 1.0 mL/min.

The initial valve setting provided for column 1 and detector 1
to run in parallel with column 2 and detector 2. Sample was
injected onto column 1 and passage of the fraction containing
pentosidine was identified by detector 1 (absorbance peak at 297
nm). The eluant containing this fraction was then diverted to
column 2 by switching the valve position and pentosidine was
measured by detector 2 via fluorometry (emission 385 nm,
excitation 335 nm). After transfer of the pentosidine-containing
fraction from column 1 to column 2 (duration of transfer, 1.6
minutes), the valve was switched back to its original position and
was ready for injection of the next sample. All operations were
performed automatically by the autosampler and system controller.

Pentosidine standard was prepared27 and provided by Dr. V.M.
Monnier (Institute of Pathology, Case Western Reserve Univer-
sity, Cleveland, OH USA).
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Statistics

Two-way analysis of variance (ANOVA)28 was used to test for
effects of diet and treatment on the measured variables. If ANOVA
showed significant interactions between diet and treatment, indi-
vidual means were compared by using the Student-Newman-Keuls
test.28 Main effects, interactions, or differences in means were
regarded as significant if theP-value was less than 0.05.

Results

Evidence of copper deficiency in rats fed a CuD diet is
provided inTable 1, which lists characteristics often asso-
ciated with copper deficiency. ANOVA indicated that body
weight was lower, heart weight relative to body weight was
higher, hematocrit was lower, organ copper concentrations

were lower, liver iron was higher, and activity of heart
Cu,Zn-SOD was lower in rats fed a CuD diet than in those
fed a CuA diet. ANOVA showed an interaction effect
between diet and treatment on liver copper concentration,
which, after comparison of means, was accounted for by a
higher copper concentration in CuA saline-treated rats than
in other CuA rats. A main effect of treatment on Cu,Zn-
SOD activity was caused by a depression of activity by
n-acetylcysteine treatment relative to other treatments. The
inhibition by aminoguanidine of defects associated with
copper deficiency that was observed in a prior study3 was
not evident in this study.

The effects of diet and treatment on products of glycation
are shown inTable 2. ANOVA indicated that rats fed a CuD
diet had a higher percentage of Hb A1 and higher concen-

Table 1 Characteristics [mean 6 SEM (N)] of rats fed copper-adequate (CuA) and copper-deficient (CuD) diets and treated by daily intraperitoneal
injection of normal saline, aminoguanidine (AG), n-acetylcysteine (NAC), or AG plus NAC

Diet Treatment

Variable

Body weight
(g)

Heart weight
(mg/g body wt) Hematocrit

Liver Cu
(nmol/g dry wt)

Heart Cu
(nmol/g dry wt)

Liver Fe
(mmol/g dry wt)

Heart Cu,Zn-SOD
(U/mg protein)

CuA Saline 268 6 21 (7) 3.64 6 0.15 (7) 0.39 6 0.02 (6) 342 6 26 (7)a 298 6 9 (7) 4.59 6 0.21 (7) 280 6 12 (7)
AG 299 6 9 (7) 3.49 6 0.06 (7) 0.41 6 0.01 (7) 227 6 13 (7)b 293 6 4 (7) 3.51 6 0.19 (7) 279 6 20 (7)

NAC 285 6 14 (7) 3.32 6 0.10 (7) 0.42 6 0.01 (7) 198 6 17 (7)b 296 6 9 (7) 3.92 6 0.12 (7) 254 6 7 (7)*
AG 1 NAC 307 6 7 (7) 3.40 6 0.09 (7) 0.41 6 0.01 (7) 278 6 29 (7)b 285 6 6 (7) 4.26 6 0.32 (7) 302 6 8 (7)

CuD Saline 259 6 12 (7) 5.33 6 0.24 (7) 0.20 6 0.01 (7) 62 6 18 (5)c 78 6 9 (6) 6.25 6 0.91 (7) 128 6 14 (7)
AG 251 6 10 (7) 5.78 6 0.46 (7) 0.20 6 0.02 (7) 80 6 18 (7)c 72 6 4 (7) 7.55 6 0.75 (7) 93 6 12 (7)

NAC 261 6 4 (7) 5.69 6 0.41 (7) 0.19 6 0.01 (5) 72 6 17 (7)c 77 6 5 (7) 7.33 6 1.00 (7) 61 6 12 (7)*
AG 1 NAC 255 6 5 (7) 5.40 6 0.26 (7) 0.21 6 0.02 (6) 55 6 13 (7)c 75 6 6 (7) 6.87 6 0.71 (7) 103 6 14 (7)

Source of variation Analysis of variance, P-values

Diet 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Treatment NS NS NS 0.02 NS NS 0.003

Diet 3 treatment NS NS NS 0.002 NS NS NS

a,b,c Values in this column not sharing a common superscript are different (P , 0.05).
*Rats treated with NAC have significantly lower values than those treated with saline, AG, or AG1NAC.
Cu,Zn-SOD–copper, zinc superoxide dismutase.

Table 2 Products of glycation [mean 6 SEM (N)] in rats fed copper-adequate (CuA) and copper-deficient (CuD) diets and treated by daily
intraperitoneal injection of normal saline, aminoguanidine (AG), n-acetylcysteine (NAC), or AG plus NAC

Diet Treatment

Product

Hemoglobin
A1(%)

Serum fructosamine
(nmol/mg protein)

Serum pentosidine
(pmol/mg protein)

CuA Saline 2.15 6 0.04 (7) 21.1 6 0.4 (5)a ND (3)
AG 2.07 6 0.08 (7) 21.0 6 0.5 (7)a ND (5)

NAC 2.03 6 0.04 (7) 21.9 6 1.2 (6)a,b ND (5)
AG 1 NAC 2.04 6 0.07 (7) 22.6 6 0.3 (7)a,b ND (4)

CuD Saline 3.33 6 0.12 (7) 25.8 6 1.2 (6)b,c 7.4 6 1.8 (3)
AG 3.44 6 0.17 (7) 24.7 6 0.7 (7)a,c 9.1 6 2.7 (5)

NAC 3.37 6 0.20 (7) 26.6 6 1.8 (7)c 5.9 6 1.3 (5)
AG 1 NAC 3.09 6 0.12 (6) 32.1 6 1.1 (7)d 3.4 6 2.3 (5)

Source of variation Analysis of variance, P-values

Diet 0.0001 0.0001 0.0001
Treatment NS 0.0004 NS

Diet 3 treatment NS 0.03 NS

a,b,c,d Values in this column not sharing a common superscript are different (P , 0.05).
ND–not detectable.
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trations of serum fructosamine and serum pentosidine than
did rats fed a CuA diet. An interaction between diet and
treatment on fructosamine production was caused primarily
by its relatively higher elevation in copper-deficient, ami-
noguanidine1 n-acetylcysteine-treated rats. The expected
inhibition of pentosidine production by aminoguanidine did
not occur.

Discussion

The new findings of this study—that fructosamine and
pentosidine are elevated in the serum of copper-deficient
rats—provide additional direct evidence of the occurrence
of glycation in dietary copper deficiency.

The possible consequences of enhanced glycation are
extensive. Because the current observations involved blood
samples, the most explicit possibility is that blood-related
functions are impaired. Dietary copper deficiency alters
platelet function and aggregation, enhances inflammation,
and impairs vasodilation.29 It also alters immune function30

and causes anemia.31,32Proper function in all of these areas
requires adequately functioning blood cells and proteins,
each of which may be altered by glycation. That glycation
may contribute, for instance, to anemia, is illustrated by the
finding that hematocrit is inversely correlated with Hb A1
when copper status is varied4 and that aminoguanidine can
ameliorate the anemia of copper deficiency.3 Altered eryth-
rocyte membrane protein22,33 and altered osmotic fragili-
ty4,34 in copper-deficient rats also may be reflections of
glycation damage. Although oxidative stress has been im-
plicated in some of this pathology, glycation and oxidation
have been shown to be so interdependent35–37 that we
believe it is beneficial to study the two mechanisms con-
currently as possible causes of copper deficiency-induced
damage.

Direct observation of glycated protein in tissues beyond
the circulation has yet to be made. We have shown
indirectly that glycation may be involved in the organ
enlargement of copper deficiency by use of manipulations
that affected glycation and concurrently affected the en-
largement.4 In these studies it was not possible to rule out a
contribution of oxidative damage and, as stated above,
future studies should consider both glycation and oxidation
in order to clarify the respective roles of the two mecha-
nisms.

The occurrence of glycation in dietary copper deficiency
very likely involves endocrine pancreatic dysfunction. Al-
though pancreatic insulin production is elevated, fasting
plasma insulin concentration is lower in copper-deficient
rats,38,39 particularly in males.40 Following a glucose load,
release of insulin is either reduced38,41 or delayed.7 This
manifests itself as a reduced glucose tolerance.5–8 The
reduced glucose tolerance thus produces the hyperglycemia
requisite for enhanced glycation. Aside from pancreatic
dysfunctionper se, insulin resistance and altered insulin
binding also have been proposed as contributors to altered
carbohydrate handling.42,43

Treatments aimed at more closely examining the roles of
glycation and oxidative stress in the defects of copper
deficiency were ineffective. One possible explanation is that
the treatment doses were too small. In the prior study where

an effect of aminoguanidine was observed,3 a different diet
formulation (preliminary, but similar, to AIN-93) was used,
which, although dietary copper was similar, caused a more
severe deficiency that was perhaps more susceptible to
improvement. The absence of an effect of aminoguanidine
on pentosidine production in this study corroborates our
view that the dosage of aminoguanidine was too small. We
feel that examination of the relationship between advanced
products and defects of copper deficiency must be pursued
more aggressively in future studies.
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